- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Whiteface Mountain (WFM) in northern NY State is the site of a historic mountaintop atmospheric observatory with an ongoing cloud water chemistry monitoring program that has been operating every summer (June through September) since 1994. Though long-term chemical analysis has been conducted, no analysis on the microbiome has been completed at WFM. Over the years, a new chemical regime has been reported in the cloudwater with missing analytes. Knowing how microbes can interact with chemicals, we hypothesize microbes are partially responsible for this shift and are crucial in understanding the chemical background of clouds. To start this study, cloudwater filters have been analyzed both chemically and microbially. Chemically, weighted averages have been calculated for each cloudwater filter based on the chemical composition of the clouds. Microbially, we have begun DNA extractions and subsequent metagenomic analysis using the Oxford Nanopore MinION using a select number of cloud water filters from 2024. Overall, this study aims to build upon microbial work accomplished by the Puy de Dôme groups and discuss the collection, storage, and analysis of cloudwater filters to connect the chemical to the microbial at WFM.more » « lessFree, publicly-accessible full text available January 15, 2026
-
Tripathy, A; Lawrence, C; Casson, P; Lombardo, S; Patel, R; Hammond, L; Brandt, R; McKim, S; Schlemmer, J; Khwaja, H; et al (, American Association for Aerosol Research)Organic compounds in the atmosphere play a pivotal role in atmospheric chemistry, and clouds are significant in the genesis and alteration of these compounds. Di-carboxylic organic anions such as oxalate serve as tracers for aqueous processing. This poster details our findings from summer measurements of three major organic acids (formic acid, acetic acid, oxalic acid), as well as inorganic anions (sulfate, chloride, nitrate) and cations (sodium, potassium, ammonium, calcium, magnesium) in cloud water, aerosol, and cloud droplet residual samples collected at the summit of Whiteface Mountain (WFM) in the Adirondack Mountains, northern New York State. We also evaluate the contribution of these organic acids to water-soluble organic carbon (WSOC) concentrations. Previous studies have explored the oxalate: WSOC ratio with ozone levels, aiming to deduce the influence of biogenic Volatile Organic Compounds (VOCs) on Secondary Organic Aerosol (SOA) formation from nearby forest ecosystems. Our poster presents new observations that significantly broaden this understanding by comparing to diverse global environments and analyzing both cloud water and aerosol phases. Additionally, we introduce oxalate: sulfate ratios from our dataset, proposed by other researchers as a key indicator of aqueous processing due to the enhanced production rates of these ions by liquid water content (sulfate ion) or droplet surface area (oxalate ion). We compare the observed range of oxalate: sulfate ratios with those from field campaigns conducted in other regions. Moreover, for the first time, we examine the relationship between ammonium and organic acids across cloud water, aerosol, and droplet residual samples collected in 2023, and discuss the influence of wildfire smoke on these dynamics.more » « less
An official website of the United States government

Full Text Available